A Fractional Laplace Equation: Regularity of Solutions and Finite Element Approximations
نویسندگان
چکیده
In this work we deal with the Dirichlet homogeneous problem for the integral fractional Laplacian on a bounded domain Ω ⊂ R. Namely, we deal with basic analytical aspects required to convey a complete Finite Element analysis of the problem (1) { (−∆)u = f in Ω, u = 0 in Ω, where the fractional Laplacian of order s is defined by (−∆)u(x) = C(n, s) P.V. ∫ Rnu(x)− u(y)|x− y|n+2s dyand C(n, s) is a normalization constant.Independently of the Sobolev regularity of the source f , solutions of (1) are not expectedto be in a better space than Hs+min{s,1/2− }(Ω) (see [2, 4]). However, by building on Hölderestimates developed in [3], we were able to obtain further regularity results in a novel frameworkof weighted fractional Sobolev spaces, leading to a priori estimates in terms of the Hölderregularity of the data [1].After developing a suitable polynomial interpolation theory in these weighted fractionalspaces, optimal order of convergence in the energy norm for the standard linear finite ele-ment method is proved for graded meshes. Numerical experiments are in agreement with ourtheoretical predictions, and illustrate the optimality of the aforementioned estimates.
منابع مشابه
Galerkin Finite Element Approximations for Stochastic Space-Time Fractional Wave Equations
Abstract. The traditional wave equation models wave propagation in an ideal conducting medium. For characterizing the wave propagation in inhomogeneous media with frequency dependent power-law attenuation, the spacetime fractional wave equation appears; further incorporating the additive white Gaussian noise coming from many natural sources leads to the stochastic spacetime fractional wave equa...
متن کاملNonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations
Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...
متن کاملThe analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform
In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...
متن کاملApproximate Solutions of Fractional Linear and Nonlinear Differential Equations Using Laplace Homotopy Analysis Method
In this paper, a Laplace homotopy analysis method which is based on homotopy analysis method and Laplace transform is applied to obtain the approximate solutions of fractional linear and non-linear differential equations. The proposed algorithm presents a procedure of constructing the set of base functions and gives a high-order deformation equation in simple form. Numerical examples are includ...
متن کاملWell-posedness, Regularity, and Finite Element Analysis for the Axisymmetric Laplace Operator on Polygonal Domains
Let L := −r−2(r∂r)2 − ∂2 z . We consider the equation Lu = f on a bounded polygonal domain with suitable boundary conditions, derived from the three-dimensional axisymmetric Poisson’s equation. We establish the well-posedness, regularity and Fredholm results in weighted Sobolev spaces, for possible singular solutions caused by the singular coefficient of the operator L, as r → 0, and by non-smo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 55 شماره
صفحات -
تاریخ انتشار 2017